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The early and intermediate development of a highly accelerated (or decelerated) 
turbulent boundary layer is analysed. For sufficiently large accelerations (or 
pressure gradients) and for total normal strains which are not excessive, the 
equation for the Reynolds shear stress simplifies to give a stress that remains 
approximately constant as it is convected along streamlines. The theoretical 
results for the evolution of the mean velocity in favourable and adverse pressure 
gradients agree well with experiment for the cases considered. A calculation which 
includes mass injection at the wall is also given. 

1. Introduction 
Although the general problem of turbulent shear flow is extremely complex, 

solutions can be obtained for certain simplified cases. Most of the cases in which 
analytical progress has been made are initial-value problems rather than fully 
developed flows, the latter apparently requiring the consideration of high-order 
effects. For instance, essentially complete solutions can be obtained for the 
effect of uniform mean gradients on developing locally homogeneous turbulence 
without self-interaction (e.g. Pearson 1959; Deissler 1961, 1968, 1971, 1972). 
Much of the information obtained from the simplified models is applicable to 
more complicated cases. 

Another initial-value problem which can evidently be analysed is that of the 
evolution, from a given initial state, of a moderately short, highly accelerated 
turbulent boundary layer. For that problem a simplification of the equations 
of motion allows us to consider the Reynolds shear stress to be approximately 
constant along streamlines. The simplification is applicable when the total 
longitudinal strain is not excessive and a pressure-gradient parameter is suf- 
ficiently large. Thus, although the present problem might seem a t  first to be more 
complicated than say the fully developed problem, it turns out to be relatively 
tractable within the framework of the present simplification. 

The simplification of frozen Reynolds stress will be considered in detail in 
the analysis section. It will suffice for now to treat the present case as the opposite 
of the equilibrium boundary layer. I n  the latter boundary layer changes are so 
gradual that  the turbulence is in quasi-equilibrium with local conditions at 
each point, and initial conditions are of little importance. The experiments of 
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Blackwelder & Kovasznay (1972) suggest the validity of the simplification 
used here for severe gradients, since although the pressure gradients caused the 
mean flow in those experiments to change considerably, the Reynolds stresses, 
a t  least in the important intermediate region of wall distances, were relatively 
unaffected. The region considered in the present analysis is mainly the so-called 
relaminarization region for severe favourable pressure gradients which has 
been observed, for instance, in experiments of Kline et al. (1967), Pate1 & 
Head (1968) and Blackwelder & Kovasznay (1972). A few results are also given 
for mass injection at the wall and for severe adverse pressure gradients. 

2. Analysis 
The equation for the mean velocity in an incompressible turbulent flow is 

where C$ is a mean velocity component, ui is a turbulent velocity component, xi 
is a space co-ordinate, t is the time, p is the density, v is the kinematic viscosity 
and P is the mean pressure. The overbar designates an averaged quantity, and 
the summation convention is used. For a thin steady-state two-dimensional 
boundary layer, (1)  becomes 

(2) 

where x, is in the direction of the main flow and P is a function only of x,. The 
transverse velocity U2 is given by the continuity relation for the mean flow 

au i a P  awl a - 
u1u29 

u -  %, = -u-l----+y--- 
ax, 9 x 2  pdxl  ax; ax2 

and dP/dx, is specified as a function of xl. 
Equations (2) and (3) can be written in dimensionless form as 

au* v dP a w :  a(-*)* u * 1 - - -  +-- i aU:2 

2 ax: ax,* pu@xl a X Z 2  ax: 
-- = - (4) 

and au;px,* = - au:jax:, ( 5 )  

where u: = q/v,, xi" = XiU0/V, (Uiuj)" = U i u j p ;  
and U, is a constant reference velocity, say the velocity outside the boundary 
layer a t  the initial station. 

In  order to solve (4) and ( 5 )  to obtain the evolution of U:, the Reynolds shear 
stress e2 must be known at each point in the flow. The full two-point equations 
for the turbulent stresses have been given (Deissler 1961, equations ( 5 ) ,  (7) 
and (S)), and can be written in abbreviated dimensionless form for the steady- 
state case as 
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- 
with a similar equation for (p'ui)*, where, as in (4) and (5), the starred quantities 
have been non-dimensionalized by suitable combinations of U,, v and p, and p 
is the fluctuating pressure component. The primes and double primes designate 
quantities evaluated at points P' and P", which are separated by the vector r, 
and the unprimed quantities are measured a t  xi, which lies halfway between P' 
and P". 

Equations (6) and (7) contain triple velocity correlations which can be obtained 
from three-point equations. The latter contain quadruple correlations which in 
turn can be obtained from four-point equations, and so on. Thus an infinite 
hierarchy of equations results. Equation (6), for r, = 0, becomes 

Each of the infinite hierarchy of higher-order equations can be put into a 
dimensionless form similar to that of (4)-(8). Thus, for a given initial flow field 
the flow field at any position along the boundary layer is given by the functional 
equations 

(9) 

and an infinite hierarchy of similar equations for other turbulence quantities. 
Specification of the parameters on the right side of (9) or (10) will therefore, in 
principle, allow the determination of the mean flow and turbulence fields. 

New parameters obtained by operating on the parameters in (9) or (10) can, 
of course, be used in their place, so long as the same total number is maintained. 
Thus, one of the original parameters can be replaced by U,/U,, where U, is the 
velocity a t  the edge of the boundary layer, since 

and 

Equations (4) and (8) can be transformed from (x,, x2) to (xl, $) co-ordinates 
(von Mises co-ordinates), where the stream function @ is given by 

The result for i = 1 , j  = 2 is 
a@pxl  = - u,, a@px, = u,. (13) 

and 
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where the continuity equation (5) and the boundary-layer assumptions have 
been used to simplify the production term in (15) (first term on the right side), 
and $* = $/v. Equation (15) can be integrated along a streamline to give 

- 
where U! = Ul/Ulo. The quantities Ulo and (u,u,),* are, respectively, the values 
of U, and (-)* on the same streamline as U, and (-)* but at  the initial 
station, and U, is the value of U, at the initial station. The subscript $ indicates 
changes along a streamline. We assume that R,, is not a strong function of 
aUl/axl, since R1, does not contain aUl/ax, explicitly [equation (15)]. Also R,, 
will, at  least initially, be close to zero, since for the initial zero-pressure-gradient 
boundary layer, the shear production term is in approximate equilibrium with 
the other terms in Rlz. Then for sufficiently large [v/U0U,,] (aUl/azl), (or large 
(-v/pU!)dP/dx,), and/or for Ul/Ul, (or U,/Uo) sufficiently close to one, (16) 
reduces to 

That is, if the pressure-gradient parameter (or the acceleration a.long stream- 
lines) is sufficiently large and the total normal strain In (U,/U,) is not excessive, 
the Reynolds shear stress can be considered as frozen a t  its initial values as i t  
is convected along streamlines. In  that case for a particular flow is, of course, 
a function only of $. Equation (17) can be written alternatively as 

(17a) 
- 

ul(au,u2/ax,), = u, au,u,/ax, = 0. 

Equation (16) indicates that the allowable values of the parameters are inter- 
dependent. For instance for U,/U,, (or U,jU,) quite close to one, (17) may apply 
reasonably well even when the pressure gradient (or aUl/ax,) is moderately small. 
Conversely, for very large pressure gradients (or large aU,/ax,) it  may be allowable 
to have relatively large departures of Ul/Ulo (or of U,/Uo) from one. 

In order to get an idea of how important an effect normal strains might have on 
-, it  may be instructive to consider analytical results for locally homogeneous 
turbulence with uniform normal strain and shear without turbulence self- 
interaction (Deissler 1968, 1972). The results for - for (aU,/ax2)/(aUl/ax,) = 2 
are given in figure 1. The point where U, = U, is taken where aulu2/axl is close 
to zero, since that corresponds to the zero-pressure-gradient region of a boundary 
layer upstream of a pressure-gradient region. For values of U,/U,, < 2, - 
according to figure 1 should not vary by more than about 14 yo. For larger values 
of U,/Ulo the variation of u.1U.z is somewhat greater. However, the variation of 
UlUQ in an actual boundary layer, where the turbulence is inhomogeneous and the 
parameter (aUl/ax,)/(aUl/axl) is usually much greater than 2, appears to be less 
than that indicated in figure 1 (see results of Blackwelder & Kovasznay). 

- 

3. Results and discussion 
Equations (14) and (17) have been integrated numerically along streamlines 

to determine the evolution of several boundary layers in severe pressure gradients. 
The numerical integrations were carried out by using an implicit method which 
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FIGURE I.  Theoretical results for development of u1u2 in homogeneous turbulence with 
uniform velocity gradients and no turbulence self-interaction (Deissler 1968, 1972, with 
(au,la~,)/(au,l~~,) = 2). 

was stable for all ratios of longitudinal to transverse increments. Because of the 
steep gradients close to the wall, more points were used in that region. The 
boundary conditions used for (14) were 77, = 0 a t  the wall and U, = U, a t  the 
edge of the boundary layer. Since U,/U, varies more slowly with x1 than does U, 
itself, the former was used as the dependent variable in the calculations, Initial 
values of Ul a,nd and longitudinal pressure distributions for the data of 
Patel & Head (1968) and of Blackwelder & Kovasznay (1972) were used in the 
calculations for favourable pressure gradients, and the predicted results were 
compared with data from those experiments. Neither of those sets of data gave 
initial values of u1u.z close to  the wall, so for that region the relation 

(18) 

was used, since close to the wall for small pressure gradients the total shear stress 
does not vary appreciably from the value 7w a t  the wall. The subscripts 0 refer 
to values a t  the initial station. Patel & Head also did not give values of 
for the region away from the wall, so for that range of their wall distances 
[ ( 7 w 0 / p ) ~ x 2 / v  > 451 was obtained from Hinze’s (1959) plot of Klebanoff’s 
zero-pressure-gradient data. Patel & Head’s data for the thinner boundary layer 
(22 in. entry) were used, since those correspond closely to two-dimensional 
conditions. Initial conditions were specified a t  936 em in Blackwelder & 
Kovasznay’s experiment and a t  - 5 in. in that of Patel & Head. 

Velocity profiles (UJU, against $/v) are plotted and compared with experiment 
in figures 2 ( n )  and (b ) .  (Note the shifted vertical scales.) In all cases the effect 
of the pressure gradient and the total normal strain parameter U,/V, is to flatten 
the profiles. The agreement between theory and experiment is considered good. 

Semi-logarithmic plots of U1/(7Jp)i  against (7,/p)i x2 /v  (law-of-the-wall plots) 
are given in figure 3. These profiles show the inner region of the boundary layer 
much better than do figures 2 (a)  and (b) .  The shear stress T~ at the wall for the 
theoretical curves was obtained from the slope of the velocity profile at  the wall 
by using points very close to the wall ((7,/p)gx2/v < 1). Points very close to the 
wall were necessary because of the nonlinearity of the profile close to the wall 
in the presence of a pressure gradient. It might be pointed out that this non- 
linearity makes the experimental determination of the shear stress at the wall 
extremely difficult. Both theory and experiment indicate that the original 

(U.1u.A = v(au1/ax2)0 - ~ , O / P  
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FIGURE 2.  Predicted early and intermediate development of mean velocity profile in 
a turbulent boundary layer with severe fa.vourable pressure gradients and comparison 
with experiments of (a)  Blackwelder & Kovasznay (1972) and ( b )  Patel & Head (1968). 
(Note shifted vertical scales.) -, theory, equations (17) and (14) ; - - - , uluz = 0 ; points, 
experiment. 

- 

logarithmic and wake regions are destroyed by the pressure-gradient and normal- 
strain effects, although a new logarithmic layer of smaller slope seems to form 
eventually. Also the thickness of the sublayer approximately doubles, indicating 
an apparent ' relaminarization ', as observed experimentally by many in- 
vestigators. However, it  is not a true relaminarization since, at least in the 
theory, is constant along streamlines. The agreement between theory and 
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FIGURE 3. Semi-logarithmic law-of-the-wall plot of theoretical velocity.JprofXes for severe 
favourable pressure gradients and comparison with experiment of Pate1 & Head (1968). 
(Note shifted vertical scales.) -, theory, equations (17) and (14) ; points, experiment. 
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FIGURE 4. Effect of neglecting Reynolds shear stress on theoretical law-of-the-wall plot 
for experimental conditions of figure 3. (Note shifted vertical scales.) -, theory, 
equations (67) and (14); ---, = 0. 
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FIGURE 5. Contribution of various terms in (4) to rate of change of dimensionless kinetic 
energy of mean flow for conditions of figure 3. U , / U ,  = 1.14. -, theory, equations (17) 
and (14); ---, u x  = 0. 

experiment appears to be quite good. For values of UJU, larger than those shown, 
the approximation of a frozen Reynolds stress apparently begins to break down. 

In  order to  see how sensitive the development of the mean profile is to the 
Reynolds shear stress, results were calculated for = 0 and are shown dashed 
in figures 2 ( b )  and 4. The effect of on the profiles in figure 2 ( b )  is slight. The 
law-of-the-wall plots in figure 4, on the other hand, show a significant quantitative 
effect of uluz on the profiles, but qualitatively the curves for UlUQ = 0 and 

$. 0 are much the same. In  both cases the original logarithmic and wake 
regions are destroyed and the sublayer is thickened. The difference between the 
indicated quantitative effects of Ti& on the profiles in figures 2 ( b )  and 4 is 
evidently due to the difference in scales and in scaling parameters in the two 
figures. 

Figure 5 shows, for a large value of the pressure-gradient parameter, the 
contributions of various terms in (4) to the rate of change of the non-dimensional 

- 
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mean kinetic energy +a( Ul/Uo)2/a(xl U,/v). (The energy in the transverse velocity 
component is negligible for a boundary layer.) The contribution of the Reynolds 
stress term is very large in a narrow region near the wall. However, that tends to 
be offset by the viscous contribution, as might be expected from (IS). Com- 
parison of the curves for =t= 0 shows that the viscous contribu- 
tion adjusts its value so as to offset the effect of the Reynolds stress. (At the 
initial station, (18) indicates that the two terms should exactly balance.) The 
viscous term is not zero at  the wall but balances the pressure-gradient term so 
that U, can remain zero a t  the wall. Thus, the present velocity profile, in contrast 
to the case of zero pressure gradient, is nonlinear a t  the wall. (If it  were linear 
the viscous term in (4) would be zero at the wall.) 

The pressure-gradient term is independent of wall distance and, for the case 
shown in figure 5 ,  becomes dominant for (r , /p) i  x2/u > 40. Thus, the destruction 
of the logarithmic and wake regions is due mainly to the pressure-gradient term, 
rather than to a change in the structure of the turbulence (although some change 
in structure may occur (Kline et al. 1967)). Also, the thickening of the sublayer is 
mostly, although not entirely, due to the pressure-gradient contribution, since 
as mentioned, viscous effects tend to offset the Reynolds stress contribution. 

The results in figure 5 are, of course, for a large pressure-gradient parameter. 
For regions of lower pressure gradient, the Reynolds stress will have a greater 
effect, as shown in figure 4. Also, the velocity profile at any position depends on 

= 0 and 

the whole distribution of pressure gradients up to that position; that is, U, is 
a functional of dP/dx,, or 

Ul = ~ l r ~ P ( ~ ) / ~ x l l ,  
where Ox < < xl. Thus, there is a quantitative (but not a qualitative) effect of 
F2 on the velocity profile, even a t  those positions where the pressure-gradient 
parameter is large. 

The analysis can be easily extended to include mass injection at the wall by 
transforming (14) from (x,, $) to (xl, $ I )  co-ordinates, where $' = $ - $,, and 
@w is the stream function a t  the wall. The latter will vary with x1 in accordance 
with (13). Equation (14), when written in (xl, $') co-ordinates, has the additional 
term - $[U2,/U0] aUT2/a$'* on the right side, where U,, is the normal velocity 
at  the wall. As before we use the simplification that T2 remains frozen as it is 
convected along streamlines (along lines of constant $, not constant $ I ) .  The 
injected fluid is assumed to be turbulence-free. 

To show the effect of mass injection on a boundary layer with severe pressure 
gradients, mass injection was added in the theoretical calculations in figure 3. 
For positive mass injection figure 6 shows that the normal flow quickly raises 
the 7Jl/(r,/p)S curve, particularly in the wake region, after which the favourable 
pressure gradient lowers and flattens the curve. The resulting curve still lies 
above the initial profile. For negative injection, the normal flow and pressure 
gradient lower and flatten the initial profile. These trends are similar to those 
observed by Julien, Kays & Moffat (1971). 

All of the results so far were for favourable pressure gradients, but the analysis 
should apply as well to severe unfavourable gradients. Figure 7 shows a com- 
parison between theory and experiment for the results of Kline et al. for a 

AQ-2 
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FIGURE 6. Effect of mass injection normal to wall on theoretical velocity profiles for 
severe favourable pressure gradients. (Initial conditions and pressure gradients corre- 
spond to figure 3.) -, U,,lU, = 0.002; - - -, UZw/U,  = - 0.002. 
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FIGURE 7. Theoretical velocity profiles for severe adverse pressure gradients and com- 
parison with experiment of Kline et al. (1967). (Note shifted vertical scales.) -, theory, 
equations (17) and (14); - - -, logarithmic; 0, 0, experiment. 
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severe unfavourable pressure gradient (their figure 9 a) .  The results indicate that 
the adverse pressure gradients produce an exaggerated wake region, but that 
the logarithmic and sublayer regions are relatively unaffected. The agreement 
between theory and experiment is good. It might be mentioned that the results 
for adverse pressure gradients were more sensitive to the distribution than 
were those for favourable gradients. In  particular, when Tz was taken as zero, 
separation occurred upstream for the run shown in figure 7 for Um/Uo = 0.92. 
Thus the presence of turbulence appears to delay separation. This is evidently 
because the Reynolds stress term in (4) is positive close to the wall and thustends 
to increase U, in that region. 

4. Concluding remarks 
The use of a Reynolds shear stress which remains frozen a t  its initial values 

as it is convected along streamlines in a moderately short, highly accelerated 
boundary layer gives results in agreement with experiment for favourable and 
unfavourable pressure gradients. For favourable pressure gradients both theory 
and experiment showed a flattening of the mean velocity profile with destruction 
of the original logarithmic and wake regions, and a thickening of the sublayer 
region. Those effects occurred both when the Reynolds shear stress was uniform 
along streamlines and when it was zero, although there were significant quanti- 
tative differences between the profiles in the two cases. Thus a t  least for the 
favourable-pressure-gradient cases considered here, the Reynolds stress term 
in the equation for the evolution of the mean velocity profile appears to be 
somewhat less important than the pressure-gradient term. Positive mass in- 
jection normal to the wall decreased the shear stress a t  the wall, whereas negative 
injection had the opposite effect. 

The effect of adverse pressure gradients on the wake region of the velocity 
profile was opposite to that of the favourable gradients; that is, the unfavourable 
gradients produced an exaggerated wake region. However, the logarithmic and 
sublayer regions were relatively unaffected for the case calculated. In  contrast 
to the favourable-pressure-gradient case, the presence of turbulence affected 
the adverse-gradient results both quantitatively and qualitatively. In par- 
ticular, turbulence prevented the early development of a separation profile, 
apparently because the Reynolds stress term in (4) is positive close to the wall. 

The simplification of constant Reynolds shear stress along streamlines was 
found most applicable when a pressure-gradient parameter was reasonably large 
and the total normal strain was not excessive [equation (IS)]. 

Because of the practical importance of heat transfer in highly accelerated 
flows, heat transfer coefficients corresponding to experimental situations have 
been ca,lculated using the present method (Deissler 1974). Those results show 
agreement between theory and experiment for the conditions indicated in the 
preceding paragraph. 
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